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Abstract --- VLSI data compression research has
been motivated by the needs  of high-speed high-
pcrformancc  da[a compression and inspired by the
VLSI technologies, An integrated data con~ression
system has been proposed to proviclc$  adaptive
multi-moclc  data compression for an aclvancccl
lilulti-ir~strtllllcrlt  spacecraft payload systcm  that
has various source data. It combines a high-ratio
lossy data compressor with a lossless data
compressor to provide various compression schcmcs.
The cn)beclded lossy  compressor is a high-speed
ncuroprocessor  for adaptive vector quantization
based upon a frequency-sensitive self-organization
neural  algorithm, T h e  e m b e d d e d  IOSSICSS
compressor is a high-speecl  pipclined  processor
design based on the Rice algorithm.

1 Introduction

1 >ata compression is essential in reducing the
data transmission or stora~e costs for broad areas of
applications SUC}l as high-definition television,
telcc{)l~fcrcl~cil~g, remote  sensing, radar, sonar,
computer communication, facsimile transmission,
ima~c d a t a b a s e  m a n a g e m e n t ,  a n d  scicncc
instrument. i n  t h e  r e s e a r c h  field of d a t a
compression, important contributions have come
from information sciences, computer sciences, signal
and ima~,e processing, computer cnginm-inp,,  very
IarCc-scale integration (VI,S1) tcchno]ogics,  etc. [1-
8]. A new trmd  of this research appears to have
shifted from basic research to system dcwclopmcnt,
in particular to high-speed VI,S1 il~~}>lcl]~cl~tati(~l~
of image and video coda-s  [6-8]. The driving forces
behind this trend arc as follows. (a) Advances of
electronic tcchnolosics, csp~cially dran~atic
progress in VI.SI t echnolog ies ,  make  m~rc
sophisticated data compression systems possible.
(b) 3’IM? increasingly strong demands on large-
volunw data c(~l~}r~~tlI~icatio~~ and storage

requirements in lnfm-ma t ion Age. (c) Smwral key
driving applications require l~igl~-}>crft~rl~~al~ce
data compression techniques such as high-
dcfiniticm 7’V, advanced multi-media infcnmaticm
systems, integrated scrvicc data networks,
satellite imaging system, and the space  scicncc
data and cofnmunication systems.

VIJSI data compression research involve:;  a
very broad spectrum of di.sciplincs, includin~ systcm
analysis, simulation of the processing algorithlns,
extraction of parallel /pi}x21ine computing st ructu rc,
development of processor archi t ccturc,  design of
functional and structural primitives, layout
generation of VI,SI chips, fabrication, packaging,
testing of functional and electrical proper[ics,
reliability and qualificatic)n. More cfforls  arc still
need cd to develop high-speed, }~ic}~-~>crforr~~arlcc
VI H data compression systems. lmprovcmcnts  in
the data compression algorithm, architecture,
software and hardware il~~~>lcl~~cl~tatiol~, and
associated systmn-]cvcl  design issues arc critical to
effectively achieve the goal of data compression,

‘f’his tutorial paper presents the algorithms,
architectures and VLSI processors used in an
intcCrated data compression system. Section two
dc.scritm tile propo.wd integrated data compression
systcm.  Sec t ion  three  ctcscribcs  the cmbcddcd
lcmless  data compression processor. Section four
describes the crnbedded  lossy image compression
procm.wr.

2 integrated 1 }ata Compression System

An integrated data com}}rcssic~n system  has
bCIeJI proposed to rncc( the needs of high-speed
lligl~-~>crft}r]~lallce  data cc)mprcssion.  1 ts primary
application is targeted for the advanced n~ulli-
instrummt spacecraft payload system  that ]MS

various source data such as scicmcc data, image,
video, and binary files [?1 ]. AI11ONS tIWSCI Varjol]s
data types, the video and ilna~c data is tl~c cl] i\’,1
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of tltc } ~ i ~ h - s p e e d  l~igl~-~>erforll~al~ce  d a t a
compression due to the real-time high-fidelity
requirmncnis  and the large data volume involved.
l;igure 1 shows a functional diagram of the
adaptive  multi-mock data compression system that
combines a high-ratio lossy data compressor with a ,
1 0 SSICSS data compressor to provide various
compression schemes to meet a broad area of
applications for various instruments.
‘1’he features  of the p r o p o s e d  adaplivc  n~ulti-
instrument d a t a  c o m p r e s s i o n  systcrn  are
summariz,cd as follows:
(A) “1’hc  proposccl multi-mode data comprmsion

schcmc  is reconfi$urable  to support five di ffercnt
operation modes for various instrunwnts  (a) bypass
(no compression), (b) lcwsy ccmprcssion,  (c) 10S1CSS
comprmsion,  (d) lossy compression enhanced with
losslcss compression, and (e) lossless compression
cnhanccd with lossy  c o m p r e s s i o n .  I’}w lossy
compression portion is capable of producing good
reconstructed data quality at hig}l compression
rat ios while the losslcss  compression portion can
produce reconstructed data without any fidelity
loss. ‘1’hc reconfiguration signal S1, S2, and S3 arc
from the communication processor. I’hc selection of
these  compression modes is dcpcndcnt  on the
inhcrcmt nature of t}w targcteci applications. The
effective maximum link or storage capability can bc
apprmimatcly incrcascd  by the same ratio as the
achicvcd conlprcssion ratio over that of the
baseline systcm.
(l\) 1! has a communication co-processor to
perform the channel coding and variable-length
packctiz,ation  am-l thus provide a stringent crror-
pmtectcd data quality and a flexible buffcrin~
mana~cmcnt  of the variable length data.
(c) It is a special-purpose high-speed signal
compressor design with a state-of-art VI,S1
technologies and nmltichip  module packaging to
meet  the computation intensive and real time
processing rcquircrncnts at a low mass, volume, and
pwer consuming.
(1)) I’he applications of the pmposcd  n~ulti-
modc  comprcssicm systcm  cover a wide spectrum
such as Iosslcss medical ima~c compression, IOSSICSS
.scicntific data compression, audio and video data
compression of high defini t ion ~’V, multi-mcdiurn
data compression, and other data communication
anti/or storage applications.

‘1’hc cmbcddcd  lossy compressor and 10 SSICSS

colnprcssor  are described in the following sections,

3 Neural-Network Based Lossy Ilata  Compressor

A modified self-organization neural network
algori{hm and its associated VI.SI neural processor
h a v e  b e e n  clcvclopcd for  adapt ive  vec tor
quantization  [9]. Sec t ion  3.1 describes the
frequency-sensitive self-orgallizatioll algorithm
and systcm-lmwl  analysis results. Section 3.2
presents a massively paralleled V1,SI neural
network harctwarc  to in~j>lcnwn! this algorithm.
Section 3,3 discusses the detailed circuit design of
the neural network processor chip. Section 3.4
prcscmts the prototype chip.

3.1 The  F’SO Neural Algorithm

The frequency-scmsitive self-organization
(l:SO) method modifies competitive learning
method [11,1 2] by applying a winning frcqucwcy and
i t s  assoc ia ted  ll~>~>cr-tllrcsll(~ld value to {,hc
cmtroid-based learnin~  rule. The 1S0 mctlmd is a
fast and powerful scheme for adaptive vector
quantization  duc to its rdativcly low computing
requirement and massi  VCI y paralleled computing
structure. It  systematically distributes the
cc)dcvectors in the vector space R’~ to approximate
the unknown probability density function of the
training vectors. Codcvcctcws quantize the vector
space and convcr-gc to cluster ccntroids.  Use of t}~c
upper-threshold f r e q u e n c y  (l’f)l) can avc~id
codcvcctor  tll~dcr-~ltiliz,atiol~  during the training
process for an inadequately chosen initial codcbook,
Empirically, an adequate l’~k is chosen to bc two to
three times larger than the average winning
frcqucmcy. ‘1’he pmformancc  of the one-iteration
FS() method can bc incrcmcntall  y improved by
using iteration to adjust codcvcctors into better
cluster cmtroids.  ‘l’he codcbook  obtained from the
previous iteration is used as the initial values of
the current itcratim. After the first iteration, the
upper-threshold frvqucncy  is not ncedccl, because a
good initial cockbook is available. ‘f’his method is
called the multiple-iteration l;SO method. As
shown in 1+’ig.  2, performance of the IIEX3 method is
very close to that c)f the lJBC; method [10].

‘t’hc 1$S0 m e t h o d  f o r  a d a p t i v e  v e c t o r
quantiration  is dmcribut as follows:
1 ) lnitialim  the codcvcctors \$’i a n d  the winni~lg
frequency };i for each dist(Jrtio]l-c(~  Jll}>L]tiIlg  neuron:

Wi(()) = R (~, (1)
};i(0)==  1, i= 1, . . ..)V.

w}~erc R(.) is a random  vc’ctor-numbc’r ~cncratiol”l
function, M is the rlUnlbCr of vrclor mmponcnts,  Al is
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t h e n u mbcr o f coctevectors, aJld
\~~i(()) ~[~il(()), ]~i?(0),  . . .. U7i~~O)]. Notice that
tlw firsl N input vcclcms can also bc Llscd as the
init ial  coctcvectors instead of  using results
Smmatect  from R(.).
2) C’omputc the distortion ~~i(l) between an input
vector X(f) and all codcvectors:

~
IJl(l)  ~ fl(X ([), \\’i(l))  = ~ (Xj(l)  -llli~l))z, (2)

ie]
where t is the traininx time index.
3) %lcct the disior(ioll-colll]>lltillg  neuron with the
sn~allcst  distortion and set its Output CJi(t) to high:

4 )  LJpdate t h e  codcvectors with a  frequency-
sensitive training rule and the associated winning
frcqumcy:

\Vi ((+1)= W,(l)+ S(l) Oi(f)[X  (f)  - J$’i(f)], (4)
.1 if 1 < [“i(t) < I;ljl ,

s(l) = { :(0
otherwise, (5)

P;(f+ 1) = F,(f)+ Oi(r), (6)
where S(t) is the frequency-sensitive lcarnin~ rate,
and 1’~}1 is the upper-thrcshokl frequmcy.  Only tlw
winninz  coctmwctor is updated. The training rule
moves  the winning codcvector  toward the training
vector  by a fractional amount which dccrcases  as
the winnins  frequency incrcasm.  If l’j is larger than
l’fh,  then set S(f) to mro and no further training
will bc performed for this neural unit.
5) Repeat stq)s 2 through 4 for all training vcc(ors.

3.2 VLSI Neural Processor Architecture

3’1) (’ p r o p o s e d  VI,S1 r~ct]rc)cor~~~>tlti~~g
architecture fc~r adaptive image  compression using
the frcqucmcy-smsitive  self-organization network
is showl~ in l~ig. 3. 2%c HO network consists of two
layers: an input layer and a competitive layer. ‘J”hc
input Iaycr  consists of M input neurons, which
correspond to the elements of the M-dimensional
input vector. }Iach input neuron ~cts its input from
the external  data bus and distributes the bu ffcred
si~nal to N distorti[~l~-coy~~}>~~t  ing neural uni ts in the
conlpelitivc layer through the synapse matrix.
I!ach distortiol~-col~~~>~lti]~g neuron  calculates a
squaw of l;uclidcan  distance between its codevcctor
and the input vcckw. ‘I”he compciitivc  process is
pcrformcct  throughout the whole  layer by the
winner-take-all opcratim. The winning neural unit
is ctctcrmined according to the minimum distortion
criterion. ‘1’hc synapse weights are thcw updated

accord ins to the l;SO learning rule as specified in
(4), (5), and (6). A mixed-si~nal VI,SI design
tcchniquc  is used to implement the parallclcct
vector quantimr.  ‘1’lw analoc  circuitry perforjns
massively paralleled neural computation and
cli~ital circuitry procmscs multiple-bit address
information. ‘1’his neural-based vector quantizcr
rcalims  a fu]l-srarch  vector quantiz.ation process
for each input vector at a time complexity 0(1).
‘1 ‘hc image data is acccsscd  from tlw host compu tcr
through the interface and timing contro] block. 7 ‘he
imafy  data is divided into subimagc blocks and can
bc stored in the dual-port vector memory. A
sut}image block is handled as a digital input veckm.
‘J’he digital input vector  is converted intc) the
ana]oc value using the 1)-to-A converter array and
fcd to input neurons of the paralleled vector
quantimr.

3.3 1S0 Network C’ircuit

l;igure 4 shows the functional block diagram of
the l;SO network slice consisting of key circuit
blocks. “1’he input neuron  i s  a  convent  iolla]
operational amplif ier in a unity-gain
configuration. ‘1’hc progranm~abIe  synapse design is
a modified wide-range Gilbert  multiplier [22],
which can perform real-valued multiplication in
four quadrants and achieve 8-bit precision. “J”hc
output sumnlin~ neuron is a amplifier with a linear
floating resistor that linearly ccmvcrts the summed
current up to 1 mA into an analog voltage with the
sign reversed, which is sent to the winner-take-all
(WTA) circuit. One WTA cell consists of two
portions. ~’hc first portion  converts input voltage
into the current  which  i s  compared  and
rmtistributcd  in the common  s i g n a l  ]ine. ~’he
resultant input current in the winning ccl] is
completely diffcrmtiated  from all lc)sing cells.  in
the second portion, the current is converted into the
oLltput Voltage that providrs  fully binary outpLlt
values to interfaced with digital circuitry fur
network lcarnin~. I’tw simulated processing time for
one network iteration is ICISS than 500 nscc. l!ach
iteration cycle includes input buffering, synapse
multiplication, neuron  summing, winner-take-a]l
operation, and index encoding.

3.4 Prototype Chip

l’hc protot ypr neural network processor chip for
a 25-dinm~sional  adaptive vector quantiwr  of (~
codmwctors was fabricated in a silicon arm of 4 6

‘?,
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11)111  X 6.8 lllrll using (he 2-Jllll C M O S  tC’ChllO]Ogy.
‘1’his ~m~lotypc chip includes 25 input neurons, 25 x
64 synapse cells, 64 distortioll-c(~lll~>lit ing ncu inns, a
winner-take-all circuit block, and a digital index
encoder.  1 (s throughput rate is 2 million vcc[ors pm
second and its equiva]cnt computation power is 3.2
billion connections per second. 1 t achieved an
in[rinsic  compression ratio of 33. The die photo of
this ncwral-based vector quan(izcr  chip is shown in
I:ig. 5. ‘t’his chip can also be intended to in@mm~t
vector quantization  of a  larger codcbook.  A n
adaptive vector quantim of 1024 codcvcctcn-s  can be
i;nplemcntcd  by cascading 16 such prototypr  chips
or by usin8 a larger design in a sublnicron fabrication
tcchnolo~y.

4 limbecldecl  Loss]ess Data Compressor

Imskws  coding is a data comprcssicm tcchniquc
that is cvnploycd to compress the data without
inducing any distortion in the reconstructed data [3].
1,ossless cod ing is also termed as noisc]css  coding,
reversible codil~g, redundancy reduction coding, and
m! ropy cod ing. 1.OSSICSS  coding is usually required
in such sit uat ions where the compression system
must be designed without prior knowledge of the
structure or cnd use of the original data, LOSSICSS
coding is also suited as a post-processing stage for
furlher  reduction of data cornprcsscd  by a lossy
compression algorithm to nlaxinli7.c  the
comprc~ssion to distortion noise ratio.

4.1 Universal Noiseless Cock

Among  existing  IOSSICSS data compression
al~orithms 1 15-20], l-lice algorithm [15] is an
cffcctivc method for prc)ducing reconstructed data
without any fidelity loss. It pmvidcs cxccllent
performance over a broad range of data contents. It
is also an efficiently inq>lcnwntable  schcmc  for
VI ,S1 realization. The universal noiseless coding
schcmc in the Rice Algorithm is a subset  of
1 ~uffman  codes optimal for Laplacian  symbol sets
[20]. A gene’ric universal noi.sc]css coder (UNC) is
~ivm in Pig. 6. It consists of three blocks: source
data conditioner, block adaptive entropy coder
(HAI!C),  and compressed data formatter. Figure 7
shows a functional design of 1%114 that is a specific
version of UNC A high-speed UNC compressor
chip has been inq>lmmn!ed  at a low hardware cost
by usinz  a VI ,S1 pipelined architcc!urc  [13,14].

4.2 Source IIata Conditioner

‘1’}~e source d a t a  c o n d i t i o n e r  rcvcrsib]y
reformats the raw data source into the standard
data source whose symbols can bc rcprmcntcd  by
uncorrelatcd non-negative integers, where smaller
integers arc more likely than that the larger ones.

‘l’he LJNC design presumes that source data
ccmcli tioning can bc done by either an off-chip
preprocessor or a cm-chip prcprcmssm.  ‘t’hc functim]
of an off-chip preprocessor can be arbitrary. ‘t’hc
on-chip preprocessor is defined as a simple  one-
dimmsional  predictor and a mapper as specified in
(7) and (8), respcc(ively.

‘t ’he prediction operation involves the
operation of taking cti ffmcnces bctwww consecut ivc
pixels:

A = x(i) - x(i-1 ) (7)

where x(i) is the i th pixel and x(i-1 ) is the i-1 th
pixel. I’hc ‘prediction ~~peration reduces tlw data
Gntropy if- there
adjacent pixels.

‘1’hc mappin~
diffcrmcc i n t o
rcprcscntation:

6==  2 A - - - 1

{
- 2A

.0+ IAI

is a hi$h  correlation among

step transforms an (n-l 1 )-bit
a n n-bit positivp i n t e g e r

,  O<ASO
,- O~A<O

9 IAI >0
(8)

where t) = MI N[x(i-1 ), 2’1 -1 - x(i-1)] and n is the
number of bits per input pixel.

~’hc source data conditioner is a regular n-bit
data path design which consists three n-bit
rcgi stcrs, four n-bit mult iplcxers, four n-bit adders,
and one n-bit comparator. Note that n is 12 for the
LJNC compressor c}~ip ctcsign [ 14].

4.3 Block Adaptive Hntropy Coder

‘1’hc standard source pixel is then encoded by
using the block adaptive entropy coding schcnm.
The BAEC pmccsses  input data on a block-by-block
basis. A block can bc any length of pixels. The fixed
block sim J = 16 is practical for the majority of
applications.

“1’o promote efficiency, the design of the }JA1iC
would bc made specific to the code algorithms. A
functional design of the BAl\C is shown in Fig. 8.
The BAIK  includm a Mock buffer, a code estimator,
a k-bit sample splitter, and a fundanwntal-
scqucncc  coder. ‘l’he llAl\C receives the string  of
unsigned integers from the preprocessor and
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performs coding  to rcducc its data rate on a block-
by-blmk basis. l;ach block is made up of 16 unsi~necl
inkyyrs.  Ibr each input block, an optimum option is
chosen ml of 11 optional code operators, which
includcI the backup operator, the fundamental
scquencc  (}~S)  operator,  and a combination of
f u n d a m e n t a l  sequcncc  with k-bit pixel splittinfi  *
with k = 1, 2, 3, 4, 5, 6, 7, or 8. With the clmscn

option, the IIAIK pmcccds  to perform codin~ on the
16-san~plc  8-t>it-~>cr-sar~~l>lc  input block.  1’S114
provides exccdlmt pcrforrnancc over a broad ran~e
of data contents with an entropy dynamic range
from 0.75 to 10.5. l’lw eleven code options arc fully
in~plcnwntcd with only five regular  hardware
blocks. A brief  description of each building block is
as follows:
I\lock Buffer. l“he Block Buffer temporarily storm
the current 16- pixel block to cnab]c block-pipclincd
operation of the RAK. At the cnd of an input line,
if less than 16 values remain,  zeros  will bc
ap}~mdecl to fill the block. ‘1’hc resultant block will
then h’ processed like other blocks. It is built with
16 12-bit shift registers.
(’ode  Estimator. I’hc code estimator chooses the
code algoriihm  that performs best on the current
block of input data. The selection is maclc on the
bias of simple arithmetical operations on the
sequence of input bits. Tlw Fo suvmcr is used to sum

up all the unsigned integers in $. “1’he set o f
dccisicm regions as described in l’able 1 is rcaliTtcd
with a random logic ctccodcr.
k-bit Sample Splitter

‘1’hc k-bit pixc]  splitting is in~plcnmntcd by
using a k-bit right-logical barrel shifters.
l;ulldanlclltal-Sequell@  Coder

l’hc l:unclamcntal  sequence (1S) operator forms
the backbone for all rcvcrsiblc  cod inz operators
used in t hc UNC except for the Backup opcrakw. 1 t

‘-n
gmm-atcs a codeword  for each entry value of & .

}br each unsigned integer i of r, its 1S codeword is
an (i+ 1 )-bit binary string  consisting of i z.crocs
followed by a single  one. lhe non-z.cm onc makes
the code rcvcrsib]c  and serves as a marker [or the
decoding process. q’his operator is also called
1’S1] ,0[.] or 1’S11 [ .]. ‘1’he lcmgth of a I’undamcmtal
scqumcc  is

[’n=J+  ~ 6, (9)
j=~ >

where ] =16 is the number of pixc]s in a block.
‘J’hc 1% c o d e r  i s  implcmcntcd  b y  using  a

rcsc’!able  and loadab]e mcrnory.  A  b i a s e d

accumulator is used to calculate the length of the
sequence.  ‘J’he intcrmcdiatc sum l’oj tracks the
“single mm” posi ticm of each coctcword stored in the
r ncmory. ‘1’he final sum 1:() rcprcscmts the bit length
of C~Ch  blc~ck.
Huffrnan 3-tuple Coder (Y’())

‘J’hc funda;ncntal  .sequcncc codinfi bcccmcs  quite
incfficicml for low entropies, since  the lenglh of
code words is at least one bit pcr pixc].  An
approach to improve the performance of the
fundamental scqucncc  codin~ for the low-entropy
source  data is  achicvcd  by a I luffrnan 3-tuple
coding method. “J’hc redundancy lcf t in data sou rcc

~;$’= PSI I [~] can bc reduced by usinx a 1 luffrnau 3-
tuple code as spccifiwt in ~’able 2.

l’he 3-tuplc  pi’s arc derived by the following
operations:
(a) I:undamcntal Sequcncc:

ix= f’,sl 1[:]= (l&.. <,n (10)

(b) Cmwlcrncnt:

(c) Third }ixtms_ion:

LX[3[RJ  = (i, i2Q* (Q5Q* . ..(i,,ooo)
= p,*/?2*...pa

[1
F

where a =- -qo 3 -tuf)lm . I’hc  last 3-tuplc  is filled

with O if necessary.

‘1’able 1. 1%114 IMcision Rcgims, N =11, n = 8, ] =.16

code 1[)

Oooo

0001

0010

0011

0100

0101

0110

0111

1000

1001

1111

(N=ll, I\= 8, ]=16)

.s6 <Fo 5120

120<Fu s241S

248 <HI s .504

504 <}0 ~1016

1016 <HI s 2040

2040< w $ 408s

4088< lU s 8]84

8184< N s20472

2047? s 1:0
—..——. --

s
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‘1’ab]c 2 3-”1’uplc  I luff man Code, cfs[i
,

I Wlp]c I code word

I Cfs [ pi ]

011 00000
101 00001
110 00010
111 JxKJll

4.4 Compressed I>ata Formatter

l:isure  IOctcpicts  thcformatfor theoutput bit
strin8 from the UNC coder. It consists mainly of a
rcfcrcnce  pixel and a collection of compressed data
blocks. 2’1~cfirst ~~-l>its  oft}~ccc~n~~>reswd o~lt~>tlt bit
string is the first n-bit pixc] value of the input data
line and can be used as the reference pixel. T}w
compressed bit string forcach data block ccmsistsof
a 4-bit II) code and followed by either a backup
block of ) )J -bit mapped differences or a 1’S
cowprcsscd  hif  sfrit~g appended with ) k bit sul>-
strings, where k is clctm-mined by the sclcctcct  c(dc

operator PSII,~. ‘1’hc final output from the UNC
after processing an input line is a compressed bit
string  of data which is completely packed and
there ar~ no inter-b]ock gaps between compressed
bit strings for the blocks. q’hc compressed bit string
arc read out by groups of 16 bits in parallel.

‘1’he Compressed Data Format tcr includes I’S
l’ackm-, SS IJacker, Backup Packer, and Y’ormattcr.
FS Packer, ‘l”hc 1% l’ackcr  prepares 16-hit words for
lbrmattcr  to pickup from 1% scqucnm with II) bits.
SS Packer. ~’hc SS l’ackcr  buffers and packs k
lowest-order bits of the 16 split pixels into k 16-bit
words for tlw 1 ‘ormat tcr,
Backup l’acker.  If the backup code opcratcw option
is selcctcd,  l~ackup Packer module buffers and packs
the 16 mapped cliffcrcnccs  into 16-bit words for thr
l;ormattcr.
l;ormatter.  ‘1’hc lknmattcr  completely conca tmatcs
and reads out the packed words from IS I’ackcr,  SS
l’ackcr,  or IIackup Packer modules to ensure that
there arc no inter-block gaps bclwecn  compressed
bit strings. I’hc  I;ormattcr  is dmi~ncd with barrel
shifters and control logic gates.

*

4.5 Prototype Chip

2’lw UNC compressor chip was designed, tcstcct,
and drmonstratcd  [14]. It was dcsi~ncd with a 1.6-
pm standard-ccl] CMOS technology and mounted in
an 84-pin pin-grid-array package. As shown in }~ig.
11, the UNC chip dcs;gn occupies a compact CII&
area of 8.8 x 7.2 n]n#, with 49,000 transistors,  79
pads. ‘1’hc worst case power dissipation is 0,25
watts at a 10 MI 17. systcm clock. ‘1’his compressor
chip is mc)untcd in an 84-pin pin-grid-array
package. It can operate up to 20M pixels/scc.
Summary of chip information is given in ‘1’ab]c 3.

‘t’ab]c 3. UNC compressor chip information

Chip Name UNC Compressor Chip

Design Method Standard-Cell V1 S1 design

[)ie Si7c 8.7~4  ~~ur) 2

1 otal #l of Device 48,986

1 otal #l of Cells 3??4

No. of f’ads 79

Package

Power

Data Rate 20 M pixels/see

5 Conclusion

‘1’hc goal of data compression is to red ucc tlw
COJlllllLJllicatioJl and Storage costs for data Systems
where reduction in the volume c)f transmitted or
recorded data is important. VI .S1 data compression
rc.search has been motivated by the needs of high-
spccd  higl]-])crforr]~ar~cc  data cornprcssicm  a n d
inspired IJY t h e  n e u r a l  n e t w o r k s ,  the
parallc]  /pipclined  processing,  and the VI,SI
tcchno]ogics.  An integrated data cornprcssicm
systcm  has been pmposcd to meet the needs of
hi#~-speed l~igl~-l>crforI~~al~cc data cornprcssion.
Its primary application is targeted for the
advanced )~~ulti-ir~strurl~cl~t  spacecraft payload
system that has various source data such as scicncc
data, image,  video,  tc]cmctry  and binary fi]cs.
~’he prcrposcd integrated data compression system
combines a high-ratio lossy data compressor with a
]oss]css data compressor to provide various
Compression SChclllM to meet a broad area of
applications. ‘l’he cmbcddcd Ic)ssy compressor is a
high-speed VLSI ncuroproccssor for adaptive
image compression bawd upon a frequmcy-wnsitivc
self-orgalliz,atiorl algorithm. l’crfm-manccs  of tllc



l;S() neuroprocessor can achieve near-optimal
results and  a  t ime  conlplmity 0(1) for each
quantiz.ation  vec tor . A ?S-dimensional  64-
coctcvector  adaptive vector quantizer  prototype
cl~i~>~vasdell~ol~sirated  k)operatcat2M vcctorspcr
second, It ]Jrovidcs allilltrillsic  cc)rlll>rcssioll ratio as
high as 33. ‘1’hccmbmldcd  lossless colnprcssor  isa
hi~l~-speed VI .S1 pipe lined processor design based
cm tlw Rice algori thin. ‘1’he chip occupies a compact
ch ip  area of 8.8x7.2 nm~2 in a 1.6-pn~ CMOS
technology and operates up to 20M pixels/see.
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